

Service Tech Manual

www.rvcomfortsystems.com

Table of Content

Introduction 1
Overview
Specifications
Hybrid Duct Styles 5
All Electric Furnace Duct Styles6
Low Voltage Wire Diagram7
High Voltage Wire Diagram (Single Stage Heat)
High Voltage Wire Diagram (Two Stage Heat)9
Hybrid Two Stage Module Wire Layout 10
All Electric Furnace Wiring (12VDC Blower)11
All Electric Furnace Wiring (230VAC Blower)12
All Electric Blower Wiring Layout 12V/230V13
Shore Power Wiring Layout14
Controller Voltage Test 15
Shore Power Voltage test 16
Heater Coil Resistance Test17
Suburban SH2542 Wiring for Hybrid System

CheapHeat[™] System Add-on & Stand-A-Lone

Technical Specifications & Charts

Thank you for choosing RV Comfort Systems Product for your heating needs. You can feel confident in your selection of this Electric Heater System because the same pride in craftsmanship and engineering that goes into other RV Comfort Systems products has been incorporated in our CheapHeat[™] system.

This manual is not intended to be use as an installation Manual. It's designed to be used as both a quick reference manual and a source for additional specifications needed when testing and troubleshooting the CheapHeat[™] Systems. Prior to using this manual the Technician must read the specific installation & safety manual for the product they are working on or this manual will not be able to provide the helpful information needed for successful installation.

IMPORTANT SAFETY INSTRUCTIONS

- Before starting work on any high voltage (120/240V AC) project, turn off power to affected areas. To accomplish this on an RV, shut down all shore power sources, including generators and inverters.
- All wiring must comply with local and national electrical codes and be installed by a qualified electrician.
- All wiring/cabling that passes through electrical boxes and panels MUST have cable clamps installed to prevent wire chaffing.
- Contact a qualified electrician with any questions about the following instructions.
- Check the available power supply and resolve any wiring problems BEFORE installing or operating this unit.
- The wiring diagrams and specifications with respect to wire size, fuse/breaker size, and grounding requirements must be followed.
- Do not immerse Electric Heater in water this unit is designed for heating air only.
- To provide continued protection against risk of electric shock, connect to properly grounded outlets only.

The wiring diagram and technical information contained in this document are the property of RV Comfort Systems LLC. and may not copied or reproduced in anyway without written permission form: RV Comfort Systems LLC. PO Box 1554 Bothell, WA 98041

www.rvcomfortsystems.com

Troubleshooting the CheapHeat™ Hybrid Heating System

-----CAUTION------

Only qualified service technicians should preform this test BE sure to adhere to all NEC safety precautions when preforming these tests DO NOT RUN ELECTRIC HEATER WITHOUT FAN RUNNING

The following pages list a number of tests that will help the technician determine what part with in the CheapHeat Hybrid has failed, if any and why. When testing the system in the energized mode, be sure the thermostat is at least 10 F degrees above the indoor temperature. When it's off make sure it's 10 F degrees below the indoor temperature.

TWO MOST COMMON PROBLEM

(I) Fan Runs but no heat

- 1. Improper voltage or tripped breakers:
 - Be sure to turn breakers completely off and then back on to reset breaker.
 - If not a tripped breaker and you just moved to a new RV site its not uncommon for it to be wired incorrectly (check the voltage exactly as outlined in the attached docs to confirm the correct phasing).
 - Tripped breaker may be caused by loose wire at the breaker, shorted wire, or defective breaker.
- 2. Voltage is present at heater power head:
 - Check to see if you have the correct voltage from the breaker to the controller to the power head (Refer to the attached doc's).
 - If voltage is present check Fuse Link to make sure it is not open (Burned out). If the Fuse link is open in EVERY case it is was caused by a lack of airflow.
 - Torn ductwork, allowing hot air to come back through the return air system causing the high temp switch to short cycle.
 - \circ $\;$ Blockage in ductwork or not enough duct work
 - Intermittent Blower motor (may work in gas mode because there is NO fail safe fuse link).
 - Blower running to slow (this can happen to a new motor and may be caused by loose wire in motor).
 - Blower overheated and shut down (after is cools it will restart for short periods).

The only solution to a blower motor problem is to replace it, if your system has been running for any period of time (Weeks or Months before the fuse link burned out you can pretty much figure it is a blower motor problem (Duct work doesn't usually go bad for no reason).

(II) Low or not enough Heat

(This assumes the heater is set on the correct heater range)

- 1. Duct work related problem:
 - Check ductwork for holes, leaks, blockages or tears.
 - Torn or leaking ductwork will allow hot air to short cycle back through the return air causing the high temp safety switch to short cycle reducing the output temperature.
 - Blockage in duct work or not enough duct work will cause a reduced air flow across the heater coil causing in a high temperature short cycle by the high temp safety switch, resulting in a lower output temperature of the over all system.
- 2. Not enough ductwork:
 - Ductwork minimums specs must be follow as shown in the installation manual (Spec's shown below).
 - The CheapHeat system is a UL listed device we are have safeties in place that will not allow any part of our ductwork to exceed very specific surface temperatures. Because of that if the ducting minimums are not followed the system ail short cycle on high temperature lock out reducing output temperatures.
- 3. Fan Motor Problem:
 - Furnace blower motor running slow or below full load amp draw (*verify blower amps on motor sticker*), this can happen for one of three reasons.
 - The first reason of a restriction in airflow, contrary to popular belief closing off registers will NOT increase airflow to the other registers. The fan will only move so much air as you restrict the air flow all that happens is the fan blade caveats. Which reduces the load o the motor ultimately reducing the current draw (amp load).
 - The second reason is slow blower motor this is usually an internal problem with the motor, on 12 volt direct current motors this is defective brushed, not uncommon on new motors (results in low current).
 - The third reason is dried out bearings, this usually happens on a blower that is 1 year or older and will ultimately result in a failed blower motor.
- *Note: Lower blower motor amps can be caused by one of two issues, airflow restriction or bad brushes.

	Atwood/Dometic									
Model	Motor Watts	Current	Voltage							
8516	55	4.6 amps	12.5 VDC							
8520	55	4.6 amps	12.5 VDC							
8525	91	7.6 amps	12.5 VDC							
8531	91	7.6 amps	12.5 VDC							
8535	118	9.8 amps	12.5 VDC							
8935	132	11.0 amps	12.5 VDC							
8940	132	11.0 amps	12.5 VDC							
8900-2450	86/202	7.2/16.8 amps	12.5 VDC							
AFMD/DFMD-16	50	4.2 amps	12.5 VDC							
AFMD/DFMD-20	50	4.2 amps	12.5 VDC							
AFMD/DFMD-25	90	7.5 amps	12.5 VDC							
AFMD/DFMD-30	90	7.5 amps	12.5 VDC							
AFMD/DFMD-35	132	11.1 amps	12.5 VDC							
AFLD/DFLD-35	150	12.5 amps	12.5 VDC							
AFLD/DFLD-40	150	12.5 amps	12.5 VDC							

Suburban									
Model Motor diameter Current Volta									
SF Series - 20 Mbtu	2.5"	6.5 amps	12.5 VDC						
SF Series - 20 Mbtu	3.0"	8.5 amps	12.5 VDC						
SF Series - 25 Mbtu	2.5"	6.5 amps	12.5 VDC						
SF Series - 25 Mbtu	3.0"	8.5 amps	12.5 VDC						
SF Series -30 Mbtu	2.5"	6.5 amps	12.5 VDC						
SF Series - 30 Mbtu	3.0"	6.5 amps	12.5 VDC						
SF Series - 35 Mbtu	2.5	8.5 amps	12.5 VDC						
SF Series - 35 Mbtu	3.0"	9.4 amps	12.5 VDC						
SF Series - 42 Mbtu	3.0"	11.5 amps	12.5 VDC						
SH Series - 35 Mbtu	3.0"	8.2 amps	12.5 VDC						
SH Series - 42 Mbtu	3.0"	10.6 amps	12.5 VDC						
SHD Series - 25/42 Mbtu	3.0"	8.8/12.0 amps	12.5 VDC						
Current draw should be within 5% of factory spec's 10% loss in current = 15% loss in air flow 20% loss in current = 30% loss in air flow									

Duct Heater and Controller Installation Standards

Electrical Specifications

Heat Range Configuration	Voltage	Current	Wattage	Fuse/Breakers	UL Rated, Wire Size Max length 100 ft.
1800	120 VAC	15 Amp	1800	(1) Single 20 Amp	(2) 12 Gauge W/Ground
3750	240 VAC	15.6 Amp	3750	(2) Dual 20 Amp	(2) 12 Gauge W/Ground
5000	240 VAC	20.8 Amp	5000	(2) Dual 30 Amp	(2) 10 Gauge W/Ground

Fan Specifications (Third party Air Handler)

Heat Range	Max	Max	Minimum	Minimum	Static	Max inlet Air	Max Air Temp
Configuration	Voltage	Current	CFM	Velocity	Pressure	Temp Energized	De-Energized
1800 Watt	15 VDC	12.6 Amps	120	400 fpm	.01-0-5" wc	75 F Degrees	250 F Degrees
3750 Watts	15 VDC	12.6 Amps	180	400 fpm	.01-0.5" wc	75 F Degrees	250 F Degrees
5000 Watts	15 VDC	12.6 Amps	240	400 fpm	.01-0.5" wc	75 F Degrees	250 F Degrees

VERTICAL MOUNTED FURNACES REQUIRE AUTO TEMP LIMIT UPGRADE TO 200°F

(Contact RV Comfort Systems LLC for correct Auto Temp Limit upgrade part)

UL	2158A I	Rated-Max	temp	rating	285°	F,	Max	Static	c 1.0 ii	n.

				Single	e 4" Round	l Duct	Average all 4" Round Ducts			
Heat Range	Min	Man	Min H					Combined		
	Min Tatal	Max Total	Min #	Max	Max	Max	Max	Max	Max	
Configuration	Total CEM	Totat CEM	Buns	Length	45°	90°	Avg.	45°	90°	
	CIM	CIM	Kuns	Supply	Bends	Bends	Length	Bends	Bends	
				Runs			of Runs			
1800 Watt	120	300	3	25 Ft	2	1	15 Ft	6	3	
3750 Watts	180	400	5	25 ft	2	1	15 Ft	10	5	
5000 Watts	240	500	6	25 ft	2	1	15 Ft	12	6	

Air Flow Specifications Rectangle Duct

28 Ga. Sheet Metal

Heat Range Configuration	Min Total CFM	Max Total CFM	Min Sq. in Supply Side Trunk line	Min # 4x8 Supply Registers	Min # 4X10 Supply Registers	Min # 2 1/4x10 Supply Registers	Min # 2 1/4x12 Supply Registers
1800 Watts	120	300	40	3	2	3	3
3750 Watts	180	400	60	4	3	5	5
5000 Watts	240	500	80	5	4	6	6

Clearance Around Duct Heater Plenum

Heat Range Configuration	Тор	Bottom	Left Side Without Power Head	Left Side With Power Head	Right Side Without Power Head	Right Side With Power Head	Model PL-7 Front	Model SA-7 Front
1800 Watts	1"	0"	1"	2 1/2"	1"	2 1/2"	1"	N/A
3750 Watts	1"	0"	1"	2 1/2"	1"	2 1/2"	1"	N/A
5000 Watts	1"	0"	1"	2 1/2"	1"	2 1/2"	1"	N/A

Multiple Systems Setting up multiple systems in one coach requires the following configurations and a separate CH-50 controller for each system.

Shore Power	CheapHeat™ Heater Configurations	Ducting
50 Amp	1@ 1800W & 1@ 1800W	Each avotam requires its own ducting with no
50 Amp	1@ 1800W & 1@ 3750W	Each system requires its own ducting with no
50 Amp	1@ 3750W & 1@ 3750W	common connections to the other system.

Air Flow and Temperatures -

MAX Ducting inside air temperature

	Plenum	System M	linimum	Air Flow	/S		with in	6 inches of	heater coil
Heater	Setting	2 x10	2 x 12	2 x 14	4 x 8	4 x 10	Cabinet	Adapter	Plenum
1800	Watts	3	2	2	2	2	155 F	Deg	145 F Deg
3750 Watts		5	4	4	5	4	155 F	Deg	145 F Deg
5000 Watts		6	6	5	6	5	155 F Deg		145 F Deg
	140	0.2	Act	ual Read	lings				
Temperature	Tomporatura			Register 1	Register 2	Register 3	Register 4	Register 5	Register 6
Cabinet adapter Discharge	With-in 6 inch's	Size of Re	egister						
							(

Duc	MAX Ducting inside air temperature with in 6 inches of heater coil					
Heater Setting	2 x10 or 4" Round	2 x 12	2 x 14	4 x 8	4 x 10	Temperature of Air
1800 Watts	3	2	2	2	2	145 F Deg
3750 Watts	4	4	4	5	4	145 F Deg
5000 Watts	6	6	5	6	5	145 F Deg
and statements and state	2 A 1	Act	ual Read	lings	1005	See a la se

Temperature with-in 6 " of		Register 1	Register 2	Register 3	Register 4	Register 5	Register 6
Cabinet Adapter	Size of Register						
	Temperature						

Low Voltage 12 VDC wiring for Gas Furnace

Picture *above* shows furnace wiring *before* CheapHeat system is installes

Picture *above* shows furnace wiring *With the* CheapHeat system is installes

www.rvcomfortsystems.com

Wire color codes and wiring to terminals

PO Box 1554 Bothell, Washington 98041 Ph# 425-408-3140 Fax# 800-453-8961 or printed without written permission from RV Comfort Systems LLC.

LOW VOLTAGE WIRE DIAGRAM FOR STAND-A-LONE CHEAPHEAT SYSTEM

CheapHeattm Low Voltage Wire Diagram

230 VAC Blower

91

CheapHeat[™]

www.rvcomfortsystems.com

CheapHeat[™] Stand-A-Lone All Electric Furnace Blower motor wiring options.

HIGH VOLTAGE WIRE DIAGRAM FOR CHEAPHEAT SYSTEM

All Grounds must be connected and Netuaral can NOT be substuted for ground, also Ground can NOT be used as Netural. The Netural leg is only used in the 120 VAC configuration.

IMPORTANT SAFETY INSTRUCTIONS READ THESE INSTRUCTIONS

1. To provide continued protection against risk of electric shock, Check the available power supply and resolve any wiring connect to properly grounded outlets only.

problems BEFORE installing or operating this unit.

5. Do not immerse in water.

following instructions. 6. Make sure to install cable clamp in to 1/2" knock out hole on Contact a qualified electrician with any questions about the and be installed by a qualified electrician.

2. All wiring must comply with local and national electrical codes

heater panel to prevent wire from chaffing

SAVE THESE INSTRUCTIONS

WHEN TESTING RESISTANCE MAKE SURE ALL POWER IS TURNED OFF

CHEAPHEAT LOW VOLTAGE WIRE DIAGRAM FOR (SUBURBAN MODEL 2542) DUAL HEAT FURNACE